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The Equivalence of
Dantzig’s Self-Dual Parametric Algorithm for Linear Programs
to Lemke’s Algorithm for Linear Complementarity Problems
Applied to Linear Programs

Irvin J. Lustig
Department of Operations Research
Stanford University

ABSTRACT

Dantzig has asserted that his self-dual parametric algorithm for solving a linear pro-
gram is equivalent to Lemke’s method for solving a linear complementarity problem when
the latter is applied to solve a linear program. In this paper, we formally prove that
Dantzig’s assertion is correct—specifically that the point reached along the solution path

! after 2¢ iterations of Lemke’s method is identical with the point reached after ¢ iterations
‘ of Dantzig’s method.
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1. Introduction

Dantszig (1963, Chapter 11) introduced his self-dual parametric algorithm to solve the
linear program

minimize ¢’z (1.1a)
subject to Az 2 (1.1%)
z 20, (1.1¢)

which is equivalent to solving the linear complementarity problem

(2)+(r 5)(2)- ). 129
uTy+vTz =0, (1.2b)
u,v,z,y 2 0. (1.2¢)

Ravindran (1970) credits Dantzig with the claim that the solution path resulting from
the application of the self-dual algorithm to the linear program (1.1) corresponds to the
one obtained by applying Lemke’s (1965) algorithm to the linear complementarity problem
(1.2). Ravindran developed a modified form of Lemke’s algorithm which he proved has a
solution path that corresponds to the self-dual algorithm. He stated “since our method
is a condensed form of Lemke’s method in some sense, we have also shown that Dantzig’s
claim may be valid.” However, Ravindran never proved that his method was equivalent to
Lemke’s algorithm.

McCammon (1970), in his Ph.D. thesis at Rensselaer Polytechnic Institute, considered
Dantzig’s claim as well. He presented his own parametric pivoting method for general linear

complementarity problems of the form

g+ Mz=w, (1.3a)
wlz =0, (1.3b)
w,z 20, (1.3¢)
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of which (1.2) is a special case. McCammon* proved that his algorithm is equivalent to
Lemke’s algorithm applied to (1.3). McCammon, however, believed that the solution path
of his algorithm did not correspond to that of Dantzig’s self-dual algorithm. In the last
section of Appendix II of his thesis, he applied his algorithm and Dantzig’s algorithm to a
numerical example in order to show that the two solution paths need not correspond. A
careful examination of his calculations indicates that he applied the two algorithms to two
different linear programs.

Section 2 of this paper gives a brief description of each of the algorithms; Section 3
contains a formal proof of Dantzig’s claim by showing how each of these algorithms when
applied to the same problem follow corresponding solution paths; Section 4 illustrates the

proof with a simple example.

2. Algorithm Descriptions

In order to simplify the discussion, we make the non-degeneracy assumption that the linear
program (1.1) has no primal or dual degenerate vertices. Otherwise, when a ratio test is
performed in each method, the same rules must be used to break ties. The equivalence of
these rules is then clear by their construction. '

The self-dual algorithm is initialized for the linear program (1.1) by arbitrarily choos-
ing any vectors f > 0 and d > 0 and scalar § > 0 sufficiently large so that —b+ 8f > 0

and ¢+ 6d > 0. The parametric linear program

minimize (c+ 0d)7z (2.1a) ;
—Az+u=—b+0f (2.10)
z,u20 (2.1¢) ,

has z =0 and u = —b + 0f as an optimal basic primal feasible solution for all sufficiently

large 8 > 0. The self-dual algorithm lowers 8 to some critical value 6y, such that for a small

* A short description of McCammon’s algorithm (without proof) is given by Lemke (1970), pp. 359-
361. I find McCammon's proof and the statement of his algorithm somewhat unclear. It is possible that his
algorithm is equivalent to Cottle’s (1972) parametric pivoting algorithm. Cottle’s algorithm is well-defined
when M has positive principal minors or M is positive semi-definite. If they are equivalent, then it is not
clear whether McCammon realized the necessity of having assumptions on the properties of M in order to N
make his algorithm well-defined. 5
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e > 0 and 0 = 6y — ¢, the current solution to (2.1) is either primal or dual infeasible for
exactly one primal or dual variable, by the non-degeneracy assumption. If primal (dual)
infeasibility occurs, then the dual (primal) simplex method is invoked for one iteration cn
(2.1) with 8 = 6y. The theory states that § can then be lowered to a value less than 6
while preserving feasibility. This allows the procedure to be iteratively repeated, stopping
at some iteration when 8 = 0 is reached or 8 = 8» > 0 is reached below which 8 cannot be
lowered. In the latter case, (2.1) is either primal or dual infeasible (or both).

Lemke’s algorithm is initialized for (1.2) by choosing the same f and d as in the
self-dual method and writing

(D)@ (e )E)-C) oo

uTy+vlz =0, (2.1d)
u,v,z,y 2 0. (2.1¢)

For all sufficiently large 8, u = =0+ 8f > 0,v=c+6d > 0,z = y = 0 is a basic
feasible solution to (2.1). The variable pairs (z;,v;) and (u;, y;) are termed complementary.
Lemke’s algorithm first makes the nonbasic artificial variable 8 basic by first decreasing its
value from +00 to some critical value & = 6, at which some basic variable becomes 0 and is
replaced by § as a basic variable. 8 remains basic from this point on until its value in some
subsequent basic solution is reduced to zero. The complement of the variable that exited
from the set of basic variables becomes on the next iteration the new entering nonbasic
variable. This new variable is made basic by pivoting out some other basic variable, while
leaving all the other basic variables nonnegative and maintaining a solution to (2.1). The
complement of the variable just pivoted out becomes the new entering nonbasic variable
and the procedure is continued in this way, maintaining an almost complementary form
until either 8 exits the basis at # = 0 or no basic variable blocks the increase of the incoming
nonbasic variable, in which case the linear program is either primal or dual infeasible (or
both).

It is important to understand that the self-dual algorithm manipulates only the data

of the matrix A of the primal linear program while Lemke’s algorithm operates both on
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the A matrix of the primal and the AT matrix of the dual problems. Hence, one pivot
in the self-dual algorithm which explicitly exchanges the role of a basic and non-basic
primal variable implicitly exchanges two corresponding dual variables as well. The set of
basic variables for the self-dual method highlights the m primal basic variables and treats
the n basic dual variables implicitly. For Lemke’s method, the set of basic variables is a
collection of some (m + n — 1) primal and dual variables of the original problem and 8. In
the self-dual algorithm, when z; enters (leaves) the set of basic variables, its complement
v; implicitly leaves (enters) the set of basic variables. Similarly, when u; leaves (enters)
the basic variable set, its complement y; implicitly enters (leaves) that set. In Lemke’s
method, all of the components of z, u, v, y are explicitly involved in the pivot process.
When a variable (e.g., u;) leaves the set of basic variables, its complement (e.g., y;) must

enter that set on the next iteration.

3. Proof of Equivalence

To show the equivalence of the self-dual algorithm and Lemke’s algorithm applied to the
linear programming problem, the algebraic expressions of the terms of the simplex tableaus
of each method and their updates are presented in such a way that their correspondence
is clear. We assume that A € R™*", b € R™, and ¢ € R". Hence the primal vector z is an
element of R™, and the dual vector y is an element of R™. Note that u € ™ and v € R".

The simplex tableau for the self-dual method is initialized as follows:

L1y 9Ty Ulyeo.,lUm RHS FBAR
Uy
: -A I -b f
Um
z c 0
DBAR d 0 0 = 400
Tableau 3.1

The initial basic solution is

u=-b+f0 = y=0 (3.1a)




v= c+db = z=0 (3.1b)
for 6 = 6,.
The simplex tableau for Lemke’s method is initialized in a form that simplifies the
algebraic updating:
UlyeoosUm VigeooyUn | Y1yeeeyYm  Zlyee+9Tn d | rHS
U
: In 0 0 -A -f1-b
Um
vy
: 0 In AT 0 -d| ¢
Un
Tableau 3.2

The initial basic solution is

u=f0—b} ==> nonbasics {:

0
v=df+c 0 (32)

for 8 = 8y. The inductive hypothesis for the proof will assume that at iteration t of the
self-dual method, and iteration 2t of Lemke’s algorithm, each method has performed pivots
and exchanged labels of complementary pairs of variables to produce Tableaus 3.1 and 3.2,
respectively. In fact, the self-dual method tableau will correspond exactly to Tableau 3.1,
while Lemke’s method will have the variable @ in its set of basic variables and one variable
among the u; and v; not in the basic set. It will be shown that § can be pivoted out of the
canonical form of Lemke’s algorithm at its current value and a non-basic variable pivoted
into the basis in such a way that the new tableau is in the form of Tableau 3.2.

Furthermore, the inductive hypothesis will also assume that —b+ f6; > 0 and c+d6, >
0, where 6, is the value of § on iteration ¢. This inductive assumption allows both methods
to restart from their relabeled tableaus.

For initialization, both methods begin with 8, = 400 and decrease 8 = 8 to some
blocking value § = 8 = 6;,. The second part of the inductive hypothesis is satisfied.

Because of the symmetry between the primal and dual linear programs, we can assume




that the self-dual method will do a dual-simplex iteration initially, pivoting out some
u;. Similarly, for Lemke’s method, we can assume that @ will enter into the set of basic
variables, replacing some primal variable u;. Therefore, just before pivoting u; out of the

basis, the canonical form of Tableau 3.1 and Tableau 3.2 correspond and thus, the test

min{'_;;}_igm {i fi> o} ,j=x{1’i2’"{:—‘:- cd; > o}} (3.3)

performed by Lemke’s Method is seen to be exactly the same as the self-dual test and
therefore the u; chosen to exit will be the same. Note in Tableau 3.2, 8 is decreasing from
+o00.

For both methods, let i, correspond to some primal slack variable u;, which will exit
the basis. By reordering the equations of the primal linear program, we can assume that
t; = 1. The self-dual method will set # = b,/ f1, and Lemke’s method will perform a pivot
in the column corresponding to § and the row corresponding to u;. This pivot will cause
0 to be made basic, replacing u;, and will set § = —b,/(—f1) = 6.

The self-dual method will now perform a dual-simplex ratio test, using 8 to determine

the parametric reduced costs ¢ + df, when 6 = b,/ f;:

_min {ﬂi:—au<0}= _min {M:au>0} (3.4)
Jj=1l,..,n ay 5 j=1,..,n flalj

Lemke’s method pivots u; out of the basis, and its complement, y;, is required to be

the entering variable. The components of RES for Lemke’s method are, when 6 = b,/ f;:

b1/ fr ifk=1;
RES(k) = { —be + fi(Wr/f1) ifk=2,...,m; (3.5)
Cj+dj(bl/f1) ifk=m+1l,....m4+n;j=k—-—m.

Because the coefficient in Tableau 3.2 in the (u;,¥;) position is zero, the column for
y1 in Tableau 3.2 remains unchanged after the pivot in the (u;,8) position. Hence the

ratio test on the second iteration of Lemke’s algorithm is only made among the variables

vj, j =1,...,n and is therefore
' min {ﬁ+dj(61/f1) - >0} ~ min {!Ml_ Ly > 0}. (3.6)
J=1,..n ay; Jj=l,..,n flalj




This is the same test as the test (3.4) done in the self-dual method. By reordering the

primal variables, we can assume that j = 2 is chosen in these ratio tests.
The pivot for the self-dual method is done in the (u;,z;) position. If we let E; be an

elementary matrix, i.e. an identity matrix except for its first column E;:

-1
- —Qa -
E, = L .22 and E; = (El g- ) ’
aiz m-—1
—Qm2
where I, is a pxp identity matrix, the new tableau is:
T1y..+9Zn UlyeooylUm RHS FBAR
T2
U2 _
—ElA E1 —Elb Elf
Um
z (—cz/an)al. +4+c (Oz/alg) 0
DBAR (—dg/an)al. + d (dz/alz) 0 0 = bl/fl

Tableau 3.3

where a;. denotes the first row of A. While the self-dual method has done a pivot on the
primal linear program, it implicitly has done a pivot on the dual linear program. The
method always maintains complementarity between the primal and dual solutions in the
tableau. Thus, at the same time that z; entered the set of basic variables, replacing u,,
1 implicitly replaced v;. After two pivots in Lemke’s method, 8 has replaced u;, and y;
has replaced v;. z; is now the variable entering into the set of basic variables. We will
now show that the Lemke system can be pivoted in such a way that z, replaces 6, and the
bases between the two methods will correspond again after this pivot. Later we will show
that Lemke’s method uses z, as the driving variable to choose the same outgoing variable
as the self-dual method, while 8 remains in the basis the entire time (until optimality). Tt

is now time for the first lemma.

Lemma 3.1. In Lemke’s method, after two pivots, the coefficient in the z; column for 6

is positive. In other words, d6/dz; < 0.




Proof. After the first pivot, the desired coefficient a = —a;2/(—f;) = a;2/f1. Since the
coefficient in the first row in the column for y, is zero, the second pivot does not modify
a. Hence a remains positive since a;2 > 0 and f; > 0 from the previous ratio tests (3.3)
and (3.6). B

If after doing the first two pivots of Lemke’s method, we pivot on this nonzero element

a, we form a new tableau that can be obtained by doing a block pivot

on Tableau 3.1. This is the same as performing the exchange (v,,y,) followed by (u,, z,).
This is done by setting

—ai1

1 1 0
= 1 1 _ 0o _ 0
Ey= — a13 and E,=]| . E; (3.7
a2 : .
0 In—2
—Q1in

and creating the following tableau:

Tableau 3.4

Then we exchange u; and z2 by pivoting on the (u, z;) element. This pivot is very




similar to the pivot done in the self-dual method. It produces the following system:

Up,ooosUm VyeeesUn | Y1yeoos¥m T1yeo-y T 0 RHS

T2

u
? E 0 0 _E\A —Ef | -Eb

L]
)
U3 0 E, EgAT 0 —E,d| E;c

Un

Tableau 3.5

This is a valid canonical form for Lemke’s method, since at 8 = 6;, the system is feasible.
Lemke’s method can be started from Tableau 3.5 with 8 as the first entering variable. By
examining Tableaus 3.3 and 3.5, the ratio tests to find the primal variable blocking the

decrease of 4, i.e.,

min_{(~E:b)i/(E1f)i : (E1f)i >0}, (3.8)

1=1,...,
are seen to be the same for both methods. Note that (Ezc); = ¢;j — (a1j/a12)cz for j # 2,
(Egc)z = Cz/alg, (—Egd)j = —dj + (al_,'/a]z)dg forj # 2, and (—Egd)z = —dg/alg. This
corresponds to the rows CBAR and DBAR in Tableau 3.3. Hence the ratio test to find the

dual variable blocking the decrease of 0,

jmmin {(Ec);/(Exd); : (Exd); > 0}, (3.9)
is the same for both methods. We have now proved the following:

Lemma 3.2. After one pivot in the self-dual method and two pivots in Lemke’s method,
the driving variable for Lemke’s method can be pivoted into the basis for  such that the
canonical forms of the new systems after rearrangement of rows and columns correspond

to Tableaus 3.1 and 3.2. Each method can be restarted from its respective new tableau.

The correspondence in Lemma 3.2 is achieved by relabeling the variables in Tableaus

3.3 and 3.5. This is done by letting the m primal basic variables represent u. If this is




done, then the two tableaus correspond to the same linear program, which is in a new
canonical form. The new form is equivalent to the initial form of the linear program by
pivoting.

However, Lemke’s method has a driving variable which does not replace §. We will
now compare the ratio tests done by the self-dual method after one pivot and Lemke’s
method after 2 pivots.

The self-dual method performs the following ratio test on the primal variables:

i {___((-E‘f}’;}'  (Eof)i > o}

S

aizby — biaxz .
{auf.' el a2 fi — ainfr > 0} (3.10)

= min
1=2,...,m

When t =1, .
(—Erd); = by /ay2
(Erf)i  —filarz

Since the ratio test is only considered when the denominator is positive, and f; > 0 and

(3.11)

a;2 > 0 from the previous iteration, —f;/a;2 < 0, which implies that i = 1 has no effect
on this ratio test.

The self-dual method performs the following ratio test on the dual variables:

. ¢j = (mj/az)es  ,
PR {d,' — (a1j/a12)dy ° dj = (@j/a12)d2 > 0 (3.12)
= . amcl- - cza.'!- . L .
J'=x{l,l-?.n {alzdj - aljdg ) aIZd" andz > 0} (313)

The dual variable for u; is also included in the ratio test, when d; > 0, yielding the ratio

cz2/ax2 C2
G/ _ & 3.14
dy/ay;  d; (3.14)
For Lemke’s method, let
1
_ -1| f2 _ 0 )
Ez=—]| . |, Es=|F , 3.15
= E | B=(B L2, (3.19)
Sm

10
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=1
h

dy
() and Ei=(E IL).
da

Then, after one pivot on Tableau 3.2, the following tableau is obtained.

UiyeoorWm MU | P2y cy¥m Tlye-oy X (] RHS
(] 1
Us 0
. Ey 0 0 ~-EzA . —Esb
Y
vy .
: E. o I AT _Eal | . |E (‘:‘ )
| Un 0
| Tableau 3.6

(3.16)

; ¥ is now the driving variable. The next pivot is on the (v3,y;) element. It produces the

| tableau
| Ul,... Um U1,..., 0 | Y1y:---1¥m ZTly...,Tn [ RES
| ; 1

Uz 0
| . E, 0 0 -E3A . —Esb
| u'

n

1)1 : by

m| BE 0 B |BAT  -BEd|: E:E.(’c)

0
Un
Tableau 3.7

At this point, z; is the driving variable. The column a corresponding to =3 has

Qy =

Glz/fh

(fx/ fr)a12 — ana,

d3/ h,

(dj/ fr)a1a — (da/ fr)a;,s

ifk=1;
ifk=2,...,m;
ifk=m+2;

fk=m+l,.. m+nk#m+2,=k-m.

(3.17)




For the right-hand side, the k'* element is:

&/h, ifk=1;
(fal fi)by — bs, ifk=2,...,m;
RES(k) = { (c2 + (d2/f1)b1)/a1a, fk=m+2;

cj + (dj/ /1)1 — (ana/ar2)(ca + (dz/ f1)b1), ifk=m+1,...,m+n,
lc;em+2,j=k—"(z:-3 18)

The ratio test for the third iteration of Lemke’s method will be

ooy, (RES(E)/p 2y > 0). (319)

We now wish to compare the results of the self-dual ratio tests (3.10),(3.13), and (3.14)
after one pivot, and the ratio test (3.19) for Lemke’s method after two pivots. The term
“winner” will refer to the index of the variable (or the variable itself) that is the argument

of a minimum ratio test. We will do the following:

(I) Compare the winners among k = 2,...,m in (3.19) and (3.10). Note that k =1
corresponds to termination of Lemke’s method.
(II) Compare the winners among k=m + 1,...,n in (3.19) and (3.13) or (3.14).
(III) Compare the two winners in (I) and (II).

Lemma 3.3. Without loes of generality, suppose i = 4 is the winner of the self-dual ratio
test (3.10) for s = 2,...,m. Then k = 4 is the winner of the Lemke ratio test (3.19) for

k=2,...,m.

Proof. Suppose on the contrary & = 3 was the winner of the Lemke ratio test for k =
2,...,m. Then

s/fi)r =y _ _(fo/ fi)br — ba
(f3/fr)arz — as2 < (fo/f1)a12 — aqa’ (3.20)
which implies b — 5
3 - lb’ f‘bl - flb‘
ajafs — a2 fy < an2fs —aaf’ (3.21)
with (f3/f1)a12 — as2 > 0 and (fi/ f1)a12 — asz > 0 (by equation (3.19)). Since i = 4 was

the winner of the self-dual ratio test (3.10) fori = 2,...,m,

aq2dy — beays < asaby — byap2 (3.22)

annfs —aafy  anfs—anfi

12




Note that the Lemke ratio test implies that the denominators agree between the two
methods. The difference between the numerators would lead one to believe that the two
tests are not equivalent. |

Equation (3.22) implies (after cross multiplication)

a12642b: f3 — ad; faby — asza42by fy + ar2a32f1by <

a12a32by fo — a2, fabs — aspagaby fi + 612842103,  (3.23)

which implies
a12b1(ae2 fs — aszfa) — a23(fsba — b3 fo) + a12f1(a32bs — ag2bs) < 0, (3.24)

which implies
bi(aszfs — as2fa) — a12(fsbs — b3 fs) + f1(as2by — agzbs) < 0. (3.25)

Equation (3.21) implies (after cross multiplication)
a12b1 f3fs — a2 fibs fo — aaaby frfs + ana fibs <
@121 f3 fa — ar2f1 fabs — as2 frby fa + asz fiba, (3.26)
which implies
0 < fibi(aazfs — a32fs) — f}(aa2bs — as2bs) + a2 f1(bs fu — f3bs), (3.27)
which implies
0 < bi(aszfs — as2fs) — a12(faby — b3 fu) + fi(as2bs — as2bs). (3.28)

Statements (3.25) and (3.28) are contradictory. Hence the two ratio tests must declare the

same winner. [

Lemma 3.4. Without loss of generality, suppose j = 4 is the winner of the self-dual ratio
tests (3.13) and (3.14) for j = 1,...,n. Then k = m + 4 is the winner of the Lemke ratio
test (3.19) fork=m+1,...,m+n. |

Proof. Throughout this proof, the relation k = m+ j will hold. Hence, we can interchange

the use of j and k througout the proof. Suppose j = 4 is not the winner of the Lemke

13




ratio test. There are two cases to consider, depending upon whether the winner j is j = 2
or j # 2, which will correspond to using equations (3.14) and (3.13) respectively.

Case 1: j # 2 is the winner. Without loss of generality, assume j = 3 is the winner.
The Lemke ratio test (3.19) implies:

afia Rt a-fethotie o
fn Rayg — %als fn Fioz— ft o

which implies

du 012
dsa;z — daa;3 dyajz — dzau

which implies
c3 — ;i-:cz cqy — ;g-cz (3.31)
dsayz — dyay3  dyayp — drags

Since j = 4 was the winner of the self-dual ratio test (3.13),

a12C4 — C2014 @12C3 — C2013
aj2dy — ajud;  aj2d; — ay3d;

(3.32)

Since a12 > 0, equation (3.32) contradicts equation (3.31). So, for the first case, k = m+4
must be the winner of the Lemke ratio test (3.19).
Case 2: k = m + 2 is the winner of the Lemke test (3.19). Then d; > 0. The ratio

test implies

(c2 + (d2/ f1)b1)/a12) - (a14/a12)cz + (b1 /f1)(de — (014/012)42)

3.33
d2/ fr (de/ fr)ar2 = (d2/ f1)a1s (3.33)
which implies
| cafy _ cufi = (ard/ar2)eafi
3.34
dz2ayg dyar2 — dgGu (3.34)
which implies
C2 Q12C4 — C2a14
—_—— 3.35
d;  ajpds — ayds; (3.35)
The self-dual ratio tests (3.13) and (3.14) imply:
a12C4 — C2Q14 ] (3.36)

ajzdy —and; ~dp’
Statements (3.35) and (3.36) are contradictory. Hence k¥ = m + 4 must be the winner of
the Lemke test. |}

14




Corollary. If the dual variable for u; wins the self-dual ratio test (3.13) and (3.14) among
the dual variables, then k = m + 2 will win the Lemke ratio test.

Proof. Similar to Lemma 3.4, Case 2.§
We will now compare the winners of the primal and dual ratio tests.

Lemma 3.5. Without loes of generality, assume i = 3 is the overall winner of the self-dual
ratio tests (3.10), (3.13) and (3.14) between the primal and the dual variables. Then k = 3
is the overall winner in the Lemke ratio test (3.19) fork =1,...,m +n.

Proof. Without loss of generality, assume that : = 3 and j = 4 are the winners among
the primal and dual variables, respectively, in the self-dual ratio tests. By Lemmas 3.3
and 3.4, k = 3 and k = m + 4 are the winners for the two Lemke ratio tests (3.19) among
k=1,...,mand k=m+1,...,m+ n, respectively. For the self-dual ratio test, the ratio
for i = 3 must be less than the ratio for j = 4. On the contrary, if k = 3 is not the overall

winner for the Lemke test, then k¥ = m + 4 must be. The Lemke test (3.19) then implies

- Sat P —fad)  fh—b

13 13 , 3.37
$a12 — Pare fa13 - ay (331
which implies p e
160~ hea b fsb —bshi
—_— e — 3.38
dyayz — dayg + 812  a13fs —asnzfi (3:38)
which implies
a12ficq — a1 fr0; < a12 fsb1 — by f1a12 — bi(a12 fs — a3z f1) (3.39)
dyayz — daayy aj2f3 — as2fa ’ )
which implies
fi(a12¢a — a14c2) _ fi(asady — b3a13) (3.40)
deayz — daayy a12fs —asazh '
The self-dual ratio test implies
a3hy — b3ay2 _ aj2¢4 —ayec2 (3.41)

aiafs —asafy  deayz —daayg

Since fi > 0, (3.40) and (3.41) are contradictory. Hence k = 3 must be the overall winner.li
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Lemma 3.6. If j = 4 is the overall winner of the self-dual ratio tests (3.10) and (3.13),
then k = m + 4 is the overall winner of the Lemke ratio test (3.19).

Proof. Similiar to Lemma 3.5.§

Lemma 3.7. If the dual variable on u, is the overall winner of the self-dual ratio tests
(3.10), (3.13) and (3.14), then k = m + 2 is the overall winner of the Lemke ratio test
(3.19).

Proof. Suppose on the contrary i = 3 is the winner among the primal variables of the self-
dual ratio test (3.10), and that u, is the winner among all the dual variables. By Lemmas
3.3 and 34, k =3 and k = m + 2 are the winners in the Lemke ratio test (3.19) among
k=1,....mand k=m+1,...,m + n, respectively. The self-dual ratio test implies:

a a3zd; — byayy

dy  annfs—anfi’ (342)
The Lemke ratio test implies
fibi— fiby _ (ca+da¥t)/an
a1z fs — a2 fr < da/ fr ’ (343)
which implies .
—~b J3b — fiby c2fi
a2 M a12fs — an2fi < ayzd;’ (344)
which implies
=bi(a1afs —asaf1) + faihaia — fidyaya a2 fy
a12fs —anfi < dy ’ (345)
which implies
a3z /1by — fibsayz < c2fi _ (3.46)

a1 fs — anz fi da
Since f; > 0, (3.42) and (3.46) are contradictory. Hence k = m + 2 must be the overall

winner of the Lemke ratio test.j

We have now shown the following: If Lemke’s method is executed in a normal manner,
z3 will become the driving variable on the third iteration. The same variable will block z;
as if z; replaced §, and then Lemke’s method was restarted from the new skew-symmetric
form, with a ratio test done between the column RHS and 8. But this form is equivalent
to restarting the self-dual method after one iteration. If the self-dual method takes ¢
iterations, this argument can be used foreach t = 1, 2,... ¢, since the inductive assumptions

will hold on each of these iterations. Hence we have proved:
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Theorem. Assume that Dantsig’s self-dual parametric algorithm is executed on (1.1)
and that Lemke’s algorithm is executed on (1.2) and an optimal solution is found by the
self-dual method in £ iterations. Then the pivots of iteration t of the self-dual algorithm
correspond in a precise way to the pivots of iterations 2t — 1, 2t and 2t + 1 of Lembke’s
algorithm, fort =1, 2, ..., ¢

Note that Lemke’s method will take 2£ 4 1 iterations. The extra pivot comes when
finding the optimal solution, when the last driving variable replaces 4.

4. An Example

In this section, we give an example to illustrate the theorem. In the tableaus the angle

brackets () indicate the next pivot that will occur. Consider the linear program

minimize 4z; — 3z,
subject to —2z; — 2z, > -19
Z1—x2221
-2, 4+ 222 22

z,2220

The initial tableau corresponding to Tableau 3.1 for the self-dual method is set up as

follows:

X3 Tz Uy Uy U3 RHS FBAR
u 2 2 1 0 O 19 0
uz -1 (1) 0 1 0 | -1 1
u3 1 -2 0 0 1 -2 1
z 4 -3 0 0 O
DBAR 0 1 0 0 O 0=+4o00
Tableau 4.1

@ is decreased from 400 and is blocked by the reduced cost for z; at a value 6, =3. z; is

the incoming nonbasic variable and the ratio test indicates that u; is the variable that z,
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will replace. The pivot is performed, yielding the tableau

Z1 23 Uy Uz U3 RHS FBAR
U 4 0 1 -2 0 21 -2
z2 -1 1 0 1 O -1 1
us (-1) 0 0o 2 1 —4 3
z 1 0 0 3 0
DBAR 1 0 0 -1 0 6=3
Tableau 4.2

After interchanging the columns for u; and z of this tableau, we arrive at a tableau that

corresponds to Tableau 4.1:

2 Uz Uy T2 U3 RHS FBAR
uy 4 -2 1 0 0 21 -2
Zz2 -1 1 o0 1 0 -1 1
us (—l) 2 0 o0 1 —4 3
z 1 3 0 0 O
DBAR 1 -1 0 0 0 =3
Tableau 4.2a

At this point, all the reduced costs are positive for 0 < 6 < 3. Hence, 0 is reduced to a
value of 4, since it is blocked by the primal basic variable u3. The dual simplex method

is invoked, and z; replaces us in the set of basic variables. The pivot is performed on

Tableau 4.2, yielding the tableau:

Ty T Uy Uy us RHS FBAR
Uy 0 0 1 6 4 5 10
z3 o 1 0 -1 -1 3 -2
) 1 0 0 -2 -1 4 -3
z 0 _ 0 0 35 1
DBAR | 0 0 0 1 1 6=1%
Tableau 4.3

Note that all the reduced costs and primal variables are nonnegative for § = 0, and hence
the optimal solution has been found. This table can be rearranged by interchanging the
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columns to yield a tableau that corresponds to Tableau 4.1:

U U3 U} T3 I) RHS FBAR
u; 6 4 1 0 O 5 10
z2 -1 -1 0 1 O 3 -2
) -2 -1 0 0 1 4 -3
z 5 1 0 o0 o0
DBAR 1 1 0 0 O 6=1%
Tableau 4.3a
For Lemke’s method, the initial tableau is:
U U U3 U1 V2 Vi Y2 Ys T1 T2 ] RHS
u; 1 0 0 0 O o 0 o0 2 2 0 19
U 0 1 0 0 O 0o 0 0 -1 1 -1 -1
us 0 0 1 0 0 o 0 0 1 =2 -1 -2
v 0O 0 0 1 0O -2 1 -1 0 0O 0 4
vy 0O 0 0 0 1 -2 -1 2 0 O (-1) -3
Tableau 4.4

On the first iteration, @ is the entering basic variable. It replaces v, in the set of basic

variables and produces the tableau:

The complement of vy, namely z,, is now the entering basic variable. It replaces u; in the

set of basic variables and produces the tableau:

U Uz Uz V3 v Yi Y2 Y3 T3 T2 0 RHS

ug 1 0 0 0 0 0 0 0 2 2 0 19

w2 | 0 1 0 0 -1 | 2 1 -2 -1 () |o]f 2

us 0 0 1 0 -1 2 1 -2 1 =2 0 1

vw | 0 0 0 1 0 |21 -1 0 0 |o0f 4

é 0 0 0 0 -1 2 1 =2 0 0 1 3
Tableau 4.5

19

Uy U U3 V1 V3 Vi Y2 Va3 T I2 g RHS
u 1 -2 0 0 2 -4 -2 4 4 0 0 15
Z2 0 1 0 0 -1 2 1 -2 -1 1 0 2
us3 o 2 1 0 -3 6 (3) -6 -1 0 0 5
v 0O 0 o0 1 o -2 1 -1 0 O 0 4
é 0 0 0 0 -1 2 1 -2 0 0O 1 3
Tableau 4.6




The complement of u3, y3, is now the entering basic variable. To show the correspondence

to Tableau 4.2a, we pivot y, into the basis for 8, rearrange the columns, and produce the

tableau:

Uy T3 U3 v1 ¥ i v Y3 T1 U2 0 RHS
Uy 1 0 0 0 0O 0 0 0 4 =2 2 21
zq 0 1 0 o0 O 0 0 0 -1 1 -1 |
U3 0 0 1 0 O 0 0 o -1 2 -3 —~4
v o 0 o0 1 O -4 1 1 0 0 -1 1
V2 0 0 0 0 1 2 -1 -2 O 0 1 3
Tableau 4.6a

y2 is the driving variable in Tableau 4.6 and replaces u3 in the set of basic variables to

produce the tableau:

Y Uz U3 v v Vi V2 Ys Ty I3 [ RHS

U 1 -2/3 2/3 0 0 0 0 0 110/3 o0 0 55/3

Zz2 0o 1/3 -1/3 0 0 0 0 o0 -2/3 1 0 1/3

w | 0 2/3 1/3 0 -1 | 2 1 -2 -1/3 0 | o] 5/3

vn | 0 —2/3 -1/3 1 1 | -4 0 1 1/3 o | o[ 83

8 | o —2/3 -1/3 0 o0 0 0 o 1/3 o0 | 1] 43
Tableau 4.7

The complement of us, ys, is now the entering basic variable. It replaces v; in the set of

basic variables and produces the tableau:

Uy Y2  uy vy v3 | y1 Y2 y3» 7 z2 | & | RES

Uy 1 -2/3 2/3 0 0 0o 0 0 10/3 O 0 55/3

zz | 0 1/3 -1/3 0 o0 | 0 o o —-2/3 1 |o | 1/3

w2 | 0 -2/3 -1/3 2 1} -6 1 0 1/3 o | o | 19/3

Vs 0 -2/3 -1/3 1 1 | -4 0 1 1/3 0 |0 | 8/3

d | o -2/3 -1/3 0 o | 0o o o 1/3 o0 | 1| a3
Tableau 4.8

The complement of vy, z,, is now the entering basic variable. It replaces 6 in the set of
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basic variables and produces the optimal tableau:

U Uz U3 U U2 Y1 Y2 Y3 T3 I 0 RHS
73} 1 6 4 0 O 0O 0 0 o0 o0 -10 5
3 9 -1 -1 0 O 0 0 0 0 1 2 3
w |0 o o 2 1]-61 0 0 0] -1 5
ws | 0 0 0 1 1|40 10 0/ -1 1
1 0o -2 -1 0 0 0O 0 0 1 0 3 4
Tableau 4.9

By reordering the columns of this tableau, we get a tableau that corresponds to Tableau
4.3a.

The following chart compares the pivots done in each method. For each pivot, the
notation (a, b) indicates that b replaces a in the set of basic variables by an explicit pivot.

For the self-dual method, the notation (a,b) indicates that b replaces a by an implicit

pivot.
Self-Dual Lemke
Itn Pivot Pivot Itn
(v2’ é) 1
(u2 ] 32)
1 (u2a .’172) 2
(v27 y2)
(U3, y2) 3
(u3 ' Z1 )
2 (v1,¥3) 4 j
(v1,y3) _ .
(0, Iy ) 5

RN

It is interesting to note how the third iteration of Lemke’s method “links” the first

and second iterations of the self-dual method.
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